
e04 – Minimizing or Maximizing a Function e04bbc

nag opt one var deriv (e04bbc)

1. Purpose

nag opt one var deriv (e04bbc) searches for a minimum, in a given finite interval, of a continuous
function of a single variable, using function and first derivative values. The method (based on cubic
interpolation) is intended for functions which have a continuous first derivative (although it will
usually work if the derivative has occasional discontinuities).

2. Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_one_var_deriv(void (*funct)(double xc, double *fc,
double *gc, Nag_Comm *comm),

double e1, double e2, double *a, double *b,
Integer max_fun, double *x, double *f,
double *g, Nag_Comm *comm, NagError *fail)

3. Description

nag opt one var deriv is applicable to problems of the form:

Minimize F (x) subject to a ≤ x ≤ b

when the first derivative dF/dx can be calculated. nag opt one var deriv normally computes a
sequence of x values which tend in the limit to a minimum of F (x) subject to the given bounds.
It also progressively reduces the interval [a, b] in which the minimum is known to lie. It uses the
safeguarded quadratic-interpolation method described in Gill and Murray (1973).

The user must supply a function funct to evaluate F (x) and its first derivative. The parameters e1
and e2 together specify the accuracy

Tol(x) = e1 × |x| + e2

to which the position of the minimum is required. Note that funct is never called at any point
which is closer than Tol(x) to a previous point.

If the original interval [a, b] contains more than one minimum, nag opt one var deriv will normally
find one of the minima.

4. Parameters

funct
The function funct, supplied by the user, must calculate the values of F (x) and dF/dx at any
point x in [a, b].

The specification of funct is:

[NP3275/5/pdf] 3.e04bbc.1

nag opt one var deriv NAG C Library Manual

void funct(double xc, double *fc, double *gc, Nag_Comm *comm)

xc
Input: x, the point at which the values of F and dF/dx are required.

fc
Output: the value of the function F at the current point x.

gc
Output: the value of the first derivative dF/dx at the current point x.

comm
Pointer to structure of type Nag Comm; the following members are relevant to
funct.

first – Boolean
Input: will be set to TRUE on the first call to funct and FALSE for all
subsequent calls.

nf – Integer
Input: the number of calls made to funct so far.

user – double ∗
iuser – Integer ∗
p – Pointer

The type Pointer will be void * with a C compiler that defines void *
and char * otherwise.
Before calling nag opt one var deriv these pointers may be allocated
memory by the user and initialized with various quantities for use by funct
when called from nag opt one var deriv.

Note: funct should be tested separately before being used in conjunction with
nag opt one var deriv.

e1
Input: the relative accuracy to which the position of a minimum is required. (Note that since
e1 is a relative tolerance, the scaling of x is automatically taken into account.)

It is recommended that e1 should be no smaller than 2ε, and preferably not much less than√
ε, where ε is the machine precision.

If e1 is set to a value less than ε, its value is ignored and the default value of
√

ε is used
instead. In particular, the user may set e1 = 0.0 to ensure that the default value is used.

e2
Input: the absolute accuracy to which the position of a minimum is required. It is
recommended that e2 should be no smaller than 2ε.

If e2 is set to a value less than ε, its value is ignored and the default value of
√

ε is used
instead. In particular, the user may set e2 = 0.0 to ensure that the default value is used.

a
Input: the lower bound a of the interval containing a minimum.
Output: an improved lower bound on the position of the minimum.

b
Input: the upper bound b of the interval containing a minimum.
Output: an improved upper bound on the position of the minimum.
Constraint: b>a+e2. Note that the value e2 =

√
ε applies here if e2 < ε on entry to

nag opt one var deriv.

max fun
Input: the maximum number of calls to funct which the user is prepared to allow.

The number of calls to funct actually made by nag opt one var deriv may be determined by
supplying a non-NULL parameter comm (see below) and examining the structure member nf
on exit.
Constraint: max fun ≥ 2. (Few problems will require more than 20 function calls.)

3.e04bbc.2 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04bbc

x
Output: the estimated position of the minimum.

f
Output: the value of F at the final point x.

g
Output: the value of the first derivative dF/dx at the final point x.

comm
Input/Output: structure containing pointers for communication to user-supplied functions;
see the above description of funct for details. The number of times the function funct was
called is returned in the member nf.

If the user does not need to make use of this communication feature, the null pointer
NAGCOMM NULL may be used in the call to nag opt one var deriv; comm will then be declared
internally for use in calls to user-supplied functions.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE 2 REAL ARG GE
On entry, a+e2 = 〈value〉 while b = 〈value〉.
These parameters must satisfy a+e2<b.

NE INT ARG LT
On entry, max fun must not be less than 2: max fun = 〈value〉.

NW MAX FUN
The maximum number of function calls, 〈value〉, have been performed.

This may have happened simply because max fun was set too small for a particular problem,
or may be due to a mistake in the user-supplied function, funct. If no mistake can be found
in funct, restart nag opt one var deriv (preferably with the values of a and b given on exit
from the previous call to nag opt one var deriv).

6. Further Comments

Timing depends on the behaviour of F (x), the accuracy demanded, and the length of the interval
[a, b]. Unless F (x) and dF/dx can be evaluated very quickly, the run time will usually be dominated
by the time spent in funct.

If F (x) has more than one minimum in the original interval [a, b], nag opt one var deriv will
determine an approximation x (and improved bounds a and b) for one of the minima.

If nag opt one var deriv finds an x such that F (x−δ1) > F (x) < F (x+δ2) for some δ1, δ2 ≥ Tol(x),
the interval [x − δ1, x + δ2] will be regarded as containing a minimum, even if F (x) is less than
F (x− δ1) and F (x+ δ2) only due to rounding errors in the user-supplied function. Therefore funct
should be programmed to calculate F (x) as accurately as possible, so that nag opt one var deriv
will not be liable to find a spurious minimum. (For similar reasons, dF/dx should be evaluated as
accurately as possible.)

6.1. Accuracy

If F (x) is δ-unimodal for some δ < Tol(x), where Tol(x) = e1 × |x| + e2, then, on exit, x
approximates the minimum of F (x) in the original interval [a, b] with an error less than 3×Tol(x).

6.2. References

Gill P E and Murray W (1973) Safeguarded steplength algorithms for optimization using descent
methods, NPL Report NAC 37, National Physical Laboratory.

7. See Also

nag opt one var no deriv (e04abc)

[NP3275/5/pdf] 3.e04bbc.3

nag opt one var deriv NAG C Library Manual

8. Example

A sketch of the function

F (x) =
sin x

x

shows that it has a minimum somewhere in the range [3.5, 5.0]. The example program below
shows how nag opt one var deriv can be used to obtain a good approximation to the position of a
minimum.

8.1. Program Text

/* nag_opt_one_var_deriv(e04bbc) Example Program.
*
* Copyright 1998 Numerical Algorithms Group.
*
* Mark 5, 1998.
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nage04.h>

#ifdef NAG_PROTO
static void funct(double xc, double *fc, double *gc, Nag_Comm *comm);
#else
static void funct();
#endif

#ifdef NAG_PROTO
static void funct(double xc, double *fc, double *gc, Nag_Comm *comm)
#else
static void funct(xc, fc, gc, comm)

double xc, *fc, *gc;
Nag_Comm *comm;

#endif
{
*fc = sin(xc) / xc;
*gc = (cos(xc) - *fc) / xc;

}
/* funct */

main()
{
double a, b;
double e1, e2;
double x, f, g;
Integer max_fun;
Nag_Comm comm;
static NagError fail;

Vprintf("e04bbc Example Program Results.\n\n");

/* e1 and e2 are set to zero so that e04abc will reset them to
* their default values
*/

e1 = 0.0;
e2 = 0.0;
/* The minimum is known to lie in the range (3.5, 5.0) */
a = 3.5;
b = 5.0;
/* Allow 30 calls of funct */
max_fun = 30;
fail.print = TRUE;
e04bbc(funct, e1, e2, &a, &b, max_fun, &x, &f, &g, &comm, &fail);

Vprintf("The minimum lies in the interval %7.5f to %7.5f.\n", a, b);

3.e04bbc.4 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04bbc

Vprintf("Its estimated position is %7.5f,\n", x);
Vprintf("where the function value is %9.4e\n",f);
Vprintf("and the gradient is %9.4e.\n",g);
Vprintf("%1ld function evaluations were required.\n", comm.nf);

exit(EXIT_SUCCESS);
}

8.2. Program Data

None.

8.3. Program Results

e04bbc Example Program Results.

The minimum lies in the interval 4.49341 to 4.49341.
Its estimated position is 4.49341,
where the function value is -2.1723e-01
and the gradient is 4.3239e-16.
6 function evaluations were required.

[NP3275/5/pdf] 3.e04bbc.5

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

